List of Header Columns

I. OVERVIEW

The first table in this document lists the column headers that appear in the .eep.track, .iso, and .iso.cmd files, and a brief description for each. Note that not all column headers appear in each type of file. Also note that the filters in .iso.cmd are listed in a separate table, also found in this document. All logarithms that appear in this list are base 10. Surface and central abundances are averaged over the outer and inner $10^{-6}\%$ of the total stellar mass.

Theoretical isochrones are provided in two flavors: basic and full. The basic isochrones contain columns such as age, stellar mass, \dot{M} , log L, log T_{eff} , log g, and surface and central abundances of a few elements, whereas the full isochrones are much more comprehensive. Columns that appear in the basic file are marked by an asterisk (*) in the table below.

The second table in this document lists the primary equivalent evolutionary points (EEPs) and their corresponding EEP number.

The third table in this document lists the currently available filters. This is only an initial set and will expand over time. The zero points depend on the photometric system—check the file headers for details.

Column Name	Description	
Appears in .track.eep Only		
star_age	Age in years	
Appears in .iso.cmd Only		
Zsurf	Surface metal mass fraction	
Appears in .iso and .iso.cmd Only		
EEP*	Equivalent Evolutionary Point number	
initial_mass*	Initial mass in M_{\odot}	
$log10_isochrone_age_yr^*$	Age of the isochrone in log years	
OR		
isochrone_age_yr*	Age of the isochrone in years	
Appears in .track.eep, .iso, and .iso.cmd		
star_mass*	Current mass in M_{\odot}	
star_mdot*	Mass loss rate in M_{\odot} /year	
he_core_mass*	Mass of the helium-rich core in M_{\odot}	
c_core_mass*	Mass of the carbon-rich core in M_{\odot}	
o_core_mass	Mass of the oxygen-rich core in M_{\odot}	
log_L*	Log bolometric luminosity in L_{\odot}	
log_L_div_Ledd	Log ratio of bolometric luminosity	
	and Eddington luminosity, where the Eddington	
	luminosity is a mass-weighted average over	
] T II*	the optical depth τ between 1 and 100	
	Log hydrogen-burning luminosity in L_{\odot}	
	Log herium-burning luminosity in L_{\odot}	
	H hurn. He hurn, and photodicintegrations in I	
log Teff*	Log effective temperature in K	
log abs loray	Log gravitational potential luminosity in L_{\odot}	
log B*	Log radius in B_{\odot}	
log g*	Log surface gravity in cm s^{-2}	
log_surf_cell_z	Log surface mass fraction in metals	
(previously named log_surf_z)		
surf_avg_omega	Surface angular rotation speed	
surf_avg_v_rot	Surface rotation speed	
surf_num_c12_div_num_o16	Ratio of surface number densities of ${}^{12}C$ and ${}^{16}O$	
v_wind_Km_per_s	Wind speed $v_{\rm w} \equiv \kappa \dot{M}/4\pi R \tau$,	
	where $\kappa \equiv$ opacity and $\tau = 2/3$, in km/s	
<pre>surf_avg_omega_crit</pre>	Surface (mass-averaged down to $\tau = 100$)	
	critical angular rotation speed	
<pre>surf_avg_omega_div_omega_crit</pre>	Ratio of surface and critical angular rotation speeds	
<pre>surf_avg_v_crit</pre>	Surface critical/breakup rotation speed	
<pre>surf_avg_v_div_v_crit</pre>	Ratio of surface and critical rotation speeds	
surf_avg_Lrad_div_Ledd	Ratio of surface radiative luminosity and Eddington luminosity	
v_div_csound_surf	Ratio of velocity and sound speed at the surface	
<pre>surf_r_equatorial_div_r</pre>	Equatorial radius in units of "effective radius" computed following Endal & Sofia 1976	
surf_r_polar_div_r	Polar radius in units of "effective radius"	

TADLE I: LEP Track and Isochrone Column nead
--

```
total_angular_momentum
surface_h1*
surface_he3*
surface_he4*
surface_li7
surface_be9
surface_b11
surface_c12^*
surface_c13
surface_n14
surface_o16*
surface f19
surface_ne20
surface_na23
surface_mg24
surface_si28
surface_s32
surface_ca40
surface_ti48
surface_fe56
log_center_T*
log_center_Rho*
center_degeneracy
center_omega
center_gamma*
mass_conv_core
center_h1*
center_he4^*
center_c12^*
center_n14
center_o16
center_ne20
center_mg24
center_si28
pp
cno
tri_alfa
burn_c
burn_n
burn_o
c12_c12
delta_nu
delta_Pg
nu_max
acoustic_cutoff
max_conv_vel_div_csound
max_gradT_div_grada
gradT_excess_alpha
```

computed following Endal & Sofia 1976 Total angular momentum in the stellar interior Surface mass fraction in ¹H Surface mass fraction in ³He Surface mass fraction in ⁴He Surface mass fraction in ⁷Li Surface mass fraction in ⁹Be Surface mass fraction in ¹¹B Surface mass fraction in ^{12}C Surface mass fraction in ^{13}C Surface mass fraction in ¹⁴N Surface mass fraction in ^{16}O Surface mass fraction in 19 F Surface mass fraction in $^{20}\mathrm{Ne}$ Surface mass fraction in ²³Na Surface mass fraction in ²⁴Mg Surface mass fraction in ²⁸Si Surface mass fraction in ³²S Surface mass fraction in ⁴⁰Ca Surface mass fraction in $^{48}\mathrm{Ti}$ Surface mass fraction in 56 Fe Log central temperature in K Log central density in $g \text{ cm}^{-3}$ Central electron chemical potential in $k_{\rm b}T$, where $k_b \equiv$ Boltzmann constant and $T \equiv$ temperature Central angular rotation speed Central plasma interaction parameter $\bar{Z}^2 e^2 / a_i k_b T$, where $\bar{Z} \equiv$ average ion charge, $e \equiv$ electron charge, and $a_i \equiv$ mean ion spacing Mass of the convective core in M_{\odot} Center mass fraction in ¹H Center mass fraction in ⁴He Center mass fraction in ^{12}C Center mass fraction in ^{14}N Center mass fraction in $\rm ^{16}O$ Center mass fraction in $^{20}\mathrm{Ne}$ Center mass fraction in ²⁴Mg Center mass fraction in ²⁸Si Log luminosity from pp-chain Log luminosity from CNO-cycle Log luminosity from triple α Log luminosity from carbon-burning Log luminosity from nitrogen-burning Log luminosity from oxygen-burning Log luminosity from carbon-carbon burning Large frequency separation for p-modes in μ Hz Period spacing for l = 1 g-mode in seconds Frequency of maximum power in μ Hz as estimated from scaling relations Maximum frequency for p-modes at surface Maximum ratio of convective velocity and sound speed in the stellar interior Maximum ratio of ∇_T and ∇_{ad} in the stellar interior Denoted by α_{∇} and referred to as the "Smoothing" parameter for MLT_{++} " in Paxton et al. 2013.

	Number between 0 and 1 describing the effectiveness with which the MLT_{++} prescription is used to aid the evolution calculations by reducing the superadiabaticity
min_Pgas_div_P	Minimum ratio of gas pressure to the total pressure in the stellar interior
max_L_rad_div_Ledd	Maximum ratio of radiative luminosity and Eddington luminosity in the interior
e_thermal	Total thermal energy in the stellar interior in ergs
envelope_binding_energy	Total binding energy in the envelope, defined as the H-rich region, i.e., hydrogen mass fraction is above 10^{-4}
conv_env_top_mass	Location of the top of the convection zone in mass
conv_env_bot_mass	Location of the bottom of the convection zone in mass
conv_env_top_radius	Location of the top of the convection zone in radius
conv_env_bot_radius	Location of the botoom of the convection zone in radius
conv_env_turnover_time_l_t	Turnover time (seconds) in the convective envelope, defined to be the mixing length $(\alpha_{\text{MLT}}H_P)$ divided by the v_{conv} evaluated one full mixing length above conv_env_bot_radius
conv_env_turnover_time_l_b	Turnover time (seconds) in the convective envelope, defined to be the mixing length $(\alpha_{\text{MLT}}H_P)$ divided by the v_{conv} evaluated one half mixing length above conv_env_bot_radius
conv_env_turnover_time_g	"Globally-averaged" turnover time (seconds) in the convective envelope, $dr/v_{\rm conv}(r)$ integrated over the entire convective envelope
phase*	FSPS phase type defined as follows: -1=PMS, 0=MS, 2=RGB, 3=CHeB, 4=EAGB, 5=TPAGB, 6=postAGB, 9=WR Caution: There may be overlap between MS and WR for very massive stars. Always double-check!

Primary EEP	EEP Number ^{a}	Phase
1	1	pre-main sequence (PMS)
2	202	zero age main sequence (ZAMS)
3	353	intermediate age main sequence (IAMS)
4	454	terminal age main sequence (TAMS)
5	605	tip of the red giant branch (RGBTip)
6	631	zero age core helium burning $(ZACHeB)^b$
7	707	terminal age core helium burning $(TACHeB)^c$
Low Mass Type		
8	808	thermally pulsating asymptotic giant branch (TPAGB)
9	1409	post asymptotic giant branch (post-AGB)
10	1710	white dwarf cooling sequence (WDCS)
High Mass Type		
8	808	carbon burning (C-burn)

TABLE II: Primary EEPs

^{*a*}Also equivalent to i + 1 where *i* is the index of the array (zero-based) containing the evolutionary track. ^bi.e., zero age horizontal branch; ZAHB for low-mass stars. ^cterminal age horizontal branch; TAHB.

Name	Reference
Bessell_U	[1]
Bessell_B	
$Bessell_V$	
Bessell_R	
Bessell_I	
2MASS_J	[2]
2MASS_H	
2MASS_Ks	
SDSS_u	[3]
SDSS_g	
$SDSS_r$	
SDSS_i	
SDSS_z	
WFPC2_F218W	[4]
WFPC2_F255W	
WFPC2_F300W	
WFPC2_F336W	
WFPC2_F439W	
WFPC2_F450W	
WFPC2_F555W	
WFPC2_F606W	
WFPC2_F622W	
WFPC2_F675W	

TABLE III: Currently Available Filters

WFPC2 F791W	
WFPC2 F814W	
WFPC2 F850LP	
	[2]
ACS_HRC_F220W	[9]
ACS_HRC_F250W	
ACS_HRC_F330W	
ACS_HRC_F344N	
ACS_HRC_F435W	
ACS_HRC_F475W	
ACS_HRC_F502N	
ACS_HRC_F550M	
ACS_HRC_F555W	
ACS_HRC_FOUDW	
ACS_HRC_F625W	
ACS_HRC_F658N	
ACS_HRC_F66UN	
ACS_HRC_F//5W	
ACS_HRC_F814W	
ACS_HRC_F850LP	
ACS_HRC_F892N	
ACS_WFC_F435W	
ACS_WFC_F475W	
ACS_WFC_F502N	
ACS_WFC_F550M	
ACS_WFC_F555W	
ACS_WFC_F606W	
ACS_WFC_F625W	
ACS_WFC_F058N	
ACS_WFC_FOOUN	
ACS_WFC_F//SW	
ACS_WFC_FOI4W	
ACS_WFC_FOOULP	
	[6]
WFC3_UVIS_F200LP	[0]
WFC3_UVIS_F218W	
WFC3_UVIS_F225W	
WFC3_UVIS_F275W	
WFC3_UVIS_F280N	
WFC3_UVIS_F300X	
WFC3_UVIS_F336W	
WFC3_UVIS_F343N	
WFC3_UVIS_F350LP	
WFC3_UVIS_F373N	
WFC3_UVIS_F390M	
WFC3_UVIS_F390W	
WFC3_UVIS_F395N	
WFU3_UVIS_F410M	
WFC3_UVIS_F438W	
WFC3_UVIS_F467M	
WFC3_UVIS_F469N	
WFC3_UVIS_F475W	
WFC3_UVIS_F475X	
WFC3_UVIS_F487N	
WFC3_UV1S_F502N	
wFC3_UVIS_F547M	

WFC3_UVIS_F555W	
WFC3_UVIS_F600LP	
WFC3_UVIS_F606W	
WFC3_UVIS_F621M	
WFC3_UVIS_F625W	
WFC3_UVIS_F631N	
WFC3_UVIS_F645N	
WFC3_UVIS_F656N	
WFC3_UVIS_F657N	
WFC3_UVIS_F658N	
WFC3_UVIS_F665N	
WFC3_UVIS_F673N	
WFC3_UVIS_F680N	
WFC3_UVIS_F689M	
WFC3_UVIS_F763M	
WFC3_UVIS_F775W	
WFC3_UVIS_F814W	
WFC3_UVIS_F845M	
WFC3_UVIS_F850LP	
WFC3_UVIS_F953N	
WFC3_IR_F098M	
WFC3_IR_F105W	
WFC3_IR_F110W	
WFC3_IR_F125W	
WFC3_IR_F126N	
WFC3_IR_F127M	
WFC3_IR_F128N	
WFC3_IR_F130N	
WFC3_IR_F132N	
WFC3_IR_F139M	
WFC3_IR_F140W	
WFC3_IR_F153M	
WFC3_IR_F160W	
WFC3_IR_F164N	
WFC3_IR_F167N	
TDAC 2 6	[7]
TRAC_3.0	[1]
TRAC_4.5	
TRAC 9 0	
INAC_0.0	
UKIDSS_Z	[8]
UKIDSS_Y	
UKIDSS_J	
UKIDSS_H	
UKIDSS_K	
CFHT_u	[9]
CFHT_g	
CFHT_r	
CFHT_i_new	
CFHT_i_old	
CFHT_z	
WISE W1	[10]
WISE WO	
WISE WS	
WISE WA	
"TOD_" T	

Strömgren_u Strömgren_v Strömgren_b Strömgren_y	[11]
PS_g PS_r PS_i PS_z PS_y PS_w PS_w PS_open	[12]
GALEX_FUV GALEX_NUV	[13]
DECam_u DECam_g DECam_r DECam_i DECam_i DECam_z DECam_Y	[14]
SkyMapper_u SkyMapper_v SkyMapper_g SkyMapper_i SkyMapper_i	[15]
Washington_C Washington_M Washington_T1 Washington_T2	[16]
DD051_vac DD051_f31	[17]
Kepler_Kp Kepler_D51	[18]
LSST_u LSST_g LSST_r LSST_i LSST_z LSST_y	[19]
JWST_F070W JWST_F090W JWST_F115W JWST_F140M JWST_F150W2 JWST_F150W JWST_F162M JWST_F162M JWST_F164N JWST_F182M JWST_F187N JWST_F200W JWST_F210M JWST_F212N	[20]

JWST_F250M	
JWST_F277W	
JWST_F300M	
JWST_F322W2	
JWST_F323N	
JWST_F335M	
JWST_F356W	
JWST_F360M	
JWST_F405N	
JWST_F410M	
JWST_F430M	
JWST_F444W	
JWST_F460M	
JWST_F466N	
JWST_F470N	
JWST_F480M	
Swift_UVW2	[21]
Swift_UVM2	
Swift_UVW1	
Swift_U	
Swift_B	
Swift_V	
Hipparcos_Hp	[22]
Tycho_B	[23]
Tycho_V	
Gaia_G_DR2Rev	[24]
Gaia_BP_DR2Rev	- *
Gaia_RP_DR2Rev	
TESS	[25]

- [1] Bessell & Murphy (2012); Bessell & Brett (1988)
- [2] Cohen et al. (2003)
- [3] classic.sdss.org/dr7/instruments/imager/index.html
- [4] Holtzman et al. (1995)
- [5] www.stsci.edu/hst/acs/analysis/throughputs
- [6] www.stsci.edu/hst/wfc3/ins_performance/filters/
- [7] Fazio et al. (2004)
- [8] Hewett et al. (2006)
- [9] www.cfht.hawaii.edu/Instruments/Imaging/Megacam/specsinformation.html
- [10] Wright et al. (2010)
- [11] Bessell (2011)
- [12] Tonry et al. (2012)
- [13] http://asd.gsfc.nasa.gov/archive/galex/Documents/PostLaunchResponseCurveData.html
- [14] www.ctio.noao.edu/noao/sites/default/files/DECam/DECam_filters.xlsx
- [15] Bessell et al. (2011)
- [16] Bessell et al. (2001)
- [17] www.noao.edu/kpno/mosaic/filters/
- [18] keplergo.arc.nasa.gov/CalibrationResponse.shtml
- [19] https://github.com/lsst/throughputs
- [20] http://www.stsci.edu/jwst/instruments/nircam/instrumentdesign/filters

- $[21] http://swift.gsfc.nasa.gov/proposals/swift_responses.html$
- [22] Bessell & Murphy (2012)
- [23] Bessell & Murphy (2012)
- [24] https://www.cosmos.esa.int/web/gaia/iow_20180316
- [25] https://heasarc.gsfc.nasa.gov/docs/tess/the-tess-space-telescope.html#bandpass